aclib : a GAP 4 package - Index 
A
B
D
E
H
I
M
N
O
P
R
T
- Algorithms for almost crystallographic groups 2.0 
- AlmostCrystallographicDim3 3.1.1 
- AlmostCrystallographicDim4 3.1.1 
- AlmostCrystallographicGroup 3.1.1 
- AlmostCrystallographicInfo 3.3.1 
- AlmostCrystallographicPcpDim3 3.2.1 
- AlmostCrystallographicPcpDim4 3.2.1 
- AlmostCrystallographicPcpGroup 3.2.1 
- Betti numbers 2.2 
- BettiNumber 2.2.2 
- BettiNumbers 2.2.3 
- Determination of certain extensions 2.3 
- Example computations I 4.1 
- Example computations II 4.2 
- Example computations III 4.3 
- Example computations with almost crystallographic groups 4.0 
- HasExtensionOfType 2.3.1 
- HolonomyGroup 3.2.3 
- IsAlmostBieberbachGroup 2.1.2 
- IsAlmostCrystallographic 2.1.1 
- IsomorphismPcpGroup 3.2.2 
- More about almost crystallographic groups 1.1 
- More about the type and the defining parameters 3.3 
- NaturalHomomorphismOnHolonomyGroup 3.2.3 
- OrientationModule 2.2.1 
- Polycyclically presented groups 3.2 
- Properties of almost crystallographic groups 2.1 
- Rational matrix groups 3.1 
- The Almost Crystallographic Groups Package 1.0 
- The catalog of almost crystallographic groups 3.0 
- The electronic versus the printed library 3.4 
[Up]
aclib manual
January 2020